ホウチン テルヒサ
Teruhisa Hochin
寶珍 輝尚 所属 追手門学院大学 理工学部 情報工学科 職種 教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2019/05 |
形態種別 | 論文 |
査読 | 査読あり |
標題 | Semantic Schema Matching for String Attribute with Word Vectors |
執筆形態 | 共著・編著(代表編著を除く) |
掲載誌名 | Proceedings - 2019 6th International Conference on Computational Science/Intelligence and Applied Informatics, CSII 2019 |
掲載区分 | 国外 |
出版社・発行元 | IEEE |
巻・号・頁 | pp.25-30 |
著者・共著者 | Kenji Nozaki,Teruhisa Hochin,Hiroki Nomiya |
概要 | Instance based schema matching is to determine the correspondences between heterogeneous databases by comparing instances. This process is especially effective when schema information is worthless to detect correspondences. Many previous processes often use schema information and statistics for analyzing correspondences. Heterogeneous databases consist of an enormous number of tables containing various attributes and arise the data heterogeneity. This problem degenerates the schema matching process seriously. Furthermore, these researches describe the need to consider semantic information because of the limitations of matching quality in schema information. In this paper, we propose the instance based schema matching considering attributes' semantics. We used Word2Vec to match attributes of character strings. The result shows a possibility to detect matching between attributes with high semantic similarity. |
DOI | 10.1109/CSII.2019.00012 |
DBLP ID | conf/csii/NozakiHN19 |
PermalinkURL | https://dblp.uni-trier.de/rec/conf/csii/2019 |
researchmap用URL | https://dblp.uni-trier.de/db/conf/csii/csii2019.html#NozakiHN19 |