モリタ タケヒコ
Morita Takehiko
盛田 健彦 所属 追手門学院大学 理工学部 数理・データサイエンス学科 職種 教授 |
|
研究期間 | 1996~1996 |
研究課題 | 古典力学系および群作用のエルゴード理論的研究 |
実施形態 | 科学研究費補助金 |
研究委託元等の名称 | 日本学術振興会 |
研究種目名 | 基盤研究(C) |
研究機関 | 東京工業大学 |
研究者・共同研究者 | 盛田 健彦,野村 祐司,磯部 健志,大鹿 健一,志賀 啓成,伊藤 秀一 |
概要 | 本研究ではタイヒミュラー空間上の測地流と写像類群に焦点をしぼって,タイヒミュラー測地流に熱力学形式を応用できるようにすることを目標としていた.当初,アノソフ系のマルコフ分割にあたるものを構成することを目標としたが,研究途中でマルコフ分割の構成よりむしろリーマン面上の正則1次微分の軌道と区間入れ替え交換との関係を用いたVeechの方法が目標達成のために自然であることがわかり,この方向で研究がすすめられた. トーラスのリーマン空間であるモデュラー曲面の上の測地流は,上半平面の境界である実軸上の変換を用いて解析できること,具体的にはモデュラー群の実軸への作用と連分数展開のアルゴリズムをを与えるGauss変換とが軌道同値であることは古くから知られていた.そして,Gauss変換がモデュラー曲面上の測地流のクロスセクションから決まる,自然な変換になっていることに着目すれば,Gauss変換に熱力学形式を適用して閉測地線の分布の情報が引き出せることも近年知られるようになってきた.注意せねばならないのは,モデュラー群はトーラスの写像類群であり,閉測地線がモデュラー群の双曲元と対応していることである.今回の試みは,区間入れ替え変換の族が作る空間を,タイヒミュラー空間の境界の一部分とみなして,Veechがその上に導入した力学系に熱力学形式を適用しようというものであった.写像類群の双曲類である擬アノソフ類の分布に関して制限付きではあるが,モデュラー曲面と類似の結果を得ようと試みた.現段階ではGauss変換がみたすような極限定理の幾つかを,熱力学形式にあらわれる転送作用素の方法で示すことができたが,ある種のディリクレ級数の収束域についてまだ検討すべき点が残っている.これの解決があまりにも長期化すると判断した場合,とりあえず,極限定理だけについて論文にまとめることも考えている. |
PermalinkURL | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-08640255 |